250 research outputs found

    Models, solution methods and threshold behaviour for the teaching space allocation problem

    Get PDF
    Universities have to manage their teaching space, and plan future needs. Their efforts are frequently hampered by, capital and maintenance costs, on one hand, pedagogical and teaching services on the other. The efficiency of space usage, can be measured by the utilisation: the percentage of available seat-hours actually used. The observed utilisation, in many institutions, is unacceptably low, and this provides our main underlying motivation: To address and assess some of the major factors that affect teaching space usage in the hope of improving it in practise. Also, when performing space management, managers operate within a limited number and capacity of lecture theatres, tutorial rooms, etc. Hence, some teaching activities require splitting into different groups. For example, lectures being too large to fit in any one room and seminars/tutorials being taught in small groups for good teaching practise. This thesis forms the cornerstone of ongoing research to illuminate issues stemming from poorly utilised space and studies the nature of constraints that underlies those low levels of utilisation. We give quantitative evidence that constraints related to timetabling are major players in pushing down utilisation levels and also, devise "Dynamic Splitting" algorithms to illustrate the effects of splitting on utilisation levels. We showed the existence of threshold between phases where splitting and allocation is "always possible" to ones where "it's never possible", hence, introducing a practical application of Phase Transition to space planning and management. We have also worked on the long-term planning aspect of teaching space and proposed methods to improve the future expected utilisation

    University space planning and space-type profiles

    Get PDF
    Universities planning the provision of space for their teaching requirements need to do so in a fashion that reduces capital and maintenance costs whilst still providing a high-quality level of service. Space plans should aim to provide sufficient capacity without incurring excessive costs due to over-capacity. A simple measure used to estimate over-provision is utilisation. Essentially, the utilisation is the fraction of seats that are used in practice, or the ratio of demand to supply. However, studies usually find that utilisation is low, often only 20–40%, and this is suggestive of significant over-capacity. Our previous work has provided methods to improve such space planning. They identify a critical level of utilisation as the highest level that can be achieved whilst still reliably satisfying the demand for places to allocate teaching events. In this paper, we extend this body of work to incorporate the notions of event-types and space-types. Teaching events have multiple ‘event-types’, such as lecture, tutorial, workshop, etc., and there are generally corresponding space-types. Matching the type of an event to a room of a corresponding space-type is generally desirable. However, realistically, allocation happens in a mixed space-type environment where teaching events of a given type are allocated to rooms of another space-type; e.g., tutorials will borrow lecture theatres or workshop rooms. We propose a model and methodology to quantify the effects of space-type mixing and establish methods to search for better space-type profiles; where the term “space-type profile” refers to the relative numbers of each type of space. We give evidence that these methods have the potential to improve utilisation levels. Hence, the contribution of this paper is twofold. Firstly, we present informative studies of the effects of space-type mixing on utilisation, and critical utilisations. Secondly, we present straightforward though novel methods to determine better space-type profiles, and give an example in which the resulting profiles are indeed significantly improved. <br/

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    Measurement of the W gamma Production Cross Section in Proton-Proton Collisions at root s=13 TeV and Constraints on Effective Field Theory Coefficients

    Get PDF
    A fiducial cross section for W gamma production in proton-proton collisions is measured at a center-of-mass energy of 13 TeV in 137 fb(-1) of data collected using the CMS detector at the LHC. The W -> e nu and mu nu decay modes are used in a maximum-likelihood fit to the lepton-photon invariant mass distribution to extract the combined cross section. The measured cross section is compared with theoretical expectations at next-to-leading order in quantum chromodynamics. In addition, 95% confidence level intervals are reported for anomalous triple-gauge couplings within the framework of effective field theory.Peer reviewe

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for top squark production in fully hadronic final states in proton-proton collisions at root s=13 TeV

    Get PDF
    A search for production of the supersymmetric partners of the top quark, top squarks, is presented. The search is based on proton-proton collision events containing multiple jets, no leptons, and large transverse momentum imbalance. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 137 fb(-1). The targeted signal production scenarios are direct and gluino-mediated top squark production, including scenarios in which the top squark and neutralino masses are nearly degenerate. The search utilizes novel algorithms based on deep neural networks that identify hadronically decaying top quarks and W bosons, which are expected in many of the targeted signal models. No statistically significant excess of events is observed relative to the expectation from the standard model, and limits on the top squark production cross section are obtained in the context of simplified supersymmetric models for various production and decay modes. Exclusion limits as high as 1310 GeVare established at the 95% confidence level on the mass of the top squark for direct top squark production models, and as high as 2260 GeV on the mass of the gluino for gluino-mediated top squark production models. These results represent a significant improvement over the results of previous searches for supersymmetry by CMS in the same final state.Peer reviewe

    Measurements of Higgs boson production cross sections and couplings in the diphoton decay channel at root s=13 TeV

    Get PDF
    Measurements of Higgs boson production cross sections and couplings in events where the Higgs boson decays into a pair of photons are reported. Events are selected from a sample of proton-proton collisions at root s = 13TeV collected by the CMS detector at the LHC from 2016 to 2018, corresponding to an integrated luminosity of 137 fb(-1). Analysis categories enriched in Higgs boson events produced via gluon fusion, vector boson fusion, vector boson associated production, and production associated with top quarks are constructed. The total Higgs boson signal strength, relative to the standard model (SM) prediction, is measured to be 1.12 +/- 0.09. Other properties of the Higgs boson are measured, including SM signal strength modifiers, production cross sections, and its couplings to other particles. These include the most precise measurements of gluon fusion and vector boson fusion Higgs boson production in several different kinematic regions, the first measurement of Higgs boson production in association with a top quark pair in five regions of the Higgs boson transverse momentum, and an upper limit on the rate of Higgs boson production in association with a single top quark. All results are found to be in agreement with the SM expectations.Peer reviewe

    Observation of tW production in the single-lepton channel in pp collisions at root s=13 TeV

    Get PDF
    A measurement of the cross section of the associated production of a single top quark and a W boson in final states with a muon or electron and jets in proton-proton collisions at root s = 13 TeV is presented. The data correspond to an integrated luminosity of 36 fb(-1) collected with the CMS detector at the CERN LHC in 2016. A boosted decision tree is used to separate the tW signal from the dominant t (t) over bar background, whilst the subleading W+jets and multijet backgrounds are constrained using data-based estimates. This result is the first observation of the tW process in final states containing a muon or electron and jets, with a significance exceeding 5 standard deviations. The cross section is determined to be 89 +/- 4 (stat) +/- 12 (syst) pb, consistent with the standard model.Peer reviewe

    Measurements of the Electroweak Diboson Production Cross Sections in Proton-Proton Collisions at root s=5.02 TeV Using Leptonic Decays

    Get PDF
    The first measurements of diboson production cross sections in proton-proton interactions at a center-of-mass energy of 5.02 TeV are reported. They are based on data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 302 pb(-1). Events with two, three, or four charged light leptons (electrons or muons) in the final state are analyzed. The WW, WZ, and ZZ total cross sections are measured as sigma(WW) = 37:0(-5.2)(+5.5) (stat)(-2.6)(+2.7) (syst) pb, sigma(WZ) = 6.4(-2.1)(+2.5) (stat)(-0.3)(+0.5)(syst) pb, and sigma(ZZ) = 5.3(-2.1)(+2.5)(stat)(-0.4)(+0.5) (syst) pb. All measurements are in good agreement with theoretical calculations at combined next-to-next-to-leading order quantum chromodynamics and next-to-leading order electroweak accuracy
    • 

    corecore